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Abstract. The flow near the end of a shallow laterally heated cavity enters a nonlinear convective regime when the
Rayleigh number R, based on cavity height, is of the same order of magnitude as the aspect ratio L (length/height).
In the case of thermally insulated horizontal boundaries the end-region solution determines a correction to the flow
and temperature fields throughout the cavity. Numerical solutions are obtained for the end-region flow for several
different Prandtl numbers and for a range of values of the scaled Rayleigh number RIL using a Dufort-Frankel
multigrid method. The results are compared with asymptotic predictions of the motion in the conductive limit
RIL-O and the boundary-layer limit RIL o.

1. Introduction

Flows driven by lateral heating in shallow rectangular cavities are of interest in relation to a
number of physical and technological phenomena, including the production of crystals by the
gradient-freeze technique (Hurle, Jakeman and Johnson [1]), cooling systems for nuclear
reactors (Boyack and Kearney [2]), solar energy collectors (Bejan and Rossie [3]) and the
dispersion of pollutants in river estuaries (Cormack, Leal and Imberger [4]). Experimental
investigations of shallow cavity flows driven by lateral heating have been reported by
Imberger [5], Bejan, Al-Homoud and Imberger [6] and Simpkins and Chen [7]. In a
two-dimensional cavity the flow depends on three non-dimensional parameters, a Rayleigh
number R, based on the cavity height and the lateral temperature difference, the Prandtl
number of the fluid, o- and the aspect ratio of the cavity, L (length/height) which here is
assumed to be large. For Rayleigh numbers R < L the flow throughout the cavity consists of
a Hadley cell driven by the constant horizontal temperature gradient set up between the end
walls, [4]. Nonlinear convective effects first become significant in the turning motion near the
ends when

R = RIL = 0(1), (1)

(Hart [8], Daniels, Blythe and Simpkins [9]). In the same range at sufficiently small Prandtl
numbers the single Hadley cell becomes susceptible to a variety of instabilities (Hart [10])
and, above certain critical values R1 = RIc, the parallel core flow is replaced by multiple
cells. The stationary transverse mode of instability actually forms an integral part of the basic
steady motion in the cavity, appearing as an imperfect bifurcation of the nonlinear flow in
the end regions. Solutions of the appropriate eigenvalue problem [9] suggest that in the case
of thermally insulated horizontal boundaries this type of behaviour is relevant for Prandtl
numbers (a-0.12 and the ensuing motion is then difficult to treat analytically because
nonlinear effects become important throughout the cavity for R1 > Rlc(Or). For larger Prandtl
numbers, the asymptotic structure of the end-region solution as R---> cc has been discussed
by Daniels [11]. This limit is of particular significance because of the high Rayleigh numbers
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encountered in practical applications and also because it represents an important step in the
understanding of flow structures in square cavities where a horizontal boundary-layer
structure consistent with the core and vertical boundary-layer motion proposed by Gill [12]
remains undetermined. One of the difficulties is the unknown significance of the so-called
'mass-flux hypothesis' which assumes that all the fluid descending near the cold wall and
ascending near the hot wall is expelled into the core before reaching the end of the vertical
boundary layer. In the boundary-layer structure proposed in [11] for the limiting form of the
end-region solution as R -- o, all of the fluid entrained by vertical boundary layers is
expelled into wall jets on the horizontal surfaces of the cavity. The balance of heat flux in the
end regions also involves an unexpectedly large constant contribution to the local tempera-
ture field. One means of investigating whether the asymptotic structure does indeed possess
these features is to solve the nonlinear end-region problem numerically.

In the present paper a Dufort-Frankel multigrid method is used to obtain numerical
solutions of the end-region problem for several values of the Prandtl number o- and for a
range of values of the scaled Rayleigh number R. The results are compared with the
asymptotic predictions obtained in [4] for the conductive limit R, -- 0 and with the boundary-
layer model proposed in [11] for the convective limit R --> c. The end-region problem is
formulated in Section 2 and in Section 3 the main results of the asymptotic analysis are
summarised. The numerical method used to obtain solutions of the nonlinear Oberbeck-
Boussinesq system is outlined in Section 4. Steady-state solutions are found by allowing the
system to evolve in time from an appropriate initial configuration. A Dufort-Frankel method
(Roache [13]) is used to solve the evolution equations for the thermal field and the vorticity
field, while a multi-level method (Brandt [14]) is used to relate the stream function and
vorticity fields via the solution of Poisson's equation. Results are obtained in Section 5 for
three values of the Prandtl number, o- = 0.05, o- = 0.733 (air) and rr = 6.983 (water). In the
first case the flow is subject to instability above the appropriate critical value R,,, as in
similar low Prandtl number calculations reported in [8] and here results are limited to
R, < 600. Most calculations were performed for air, and results are obtained for values of R1
up to 20000, enabling a realistic comparison to be made with the predictions of the
boundary-layer analysis. The results are discussed in Section 6.

2. Shallow cavity flow R l = 0(1)

A cavity of length and height h occupies the region 0 x < L, 0 z < 1 where (x, z) are
cartesian coordinates nondimensionalised with respect to h. The cavity is filled with a fluid of
kinematic viscosity v, thermal diffusivity K and coefficient of thermal expansion a. The end
wall at x = L = l/h is maintained at a constant temperature AT in excess of that at x = 0 and
the two horizontal walls z = 0 and z = 1 are perfectly insulated. In the Oberbeck-Boussinesq
approximation time-dependent motion is governed by the equations

(a 3 a (co, Fi)_ aT
l at a(x, z) =V + R -(2)

(3)V2 = - , (3)

aT a(T, ()
_+ =V2T (4)

at a (x, z)
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for the vorticity WO, stream function and temperature T, which are non-dimensionalised
with respect to Klh 2, K and AT respectively. The time t is non-dimensionalised with respect
to h2/K and the Rayleigh number R and Prandtl number o- are defined by

R = ag ATh3/Kv, o = V/K , (5)

where g is the acceleration due to gravity. The boundary conditions on the rigid walls of the
cavity are

-T0 onx =0, (6)ax

q=5 ax =0, T=1 onx=L, (7)

a- d aT
z= =0 onz=0,1 (8)az -=

and it is easily verified that the governing equations and boundary conditions are consistent
with Gill's [12] centro-symmetry relations

O(x, z, t) = (L - x, 1 - z, t), (9)
T(x,z,t)= 1- T(L -x, 1 -z,t) ,J

which, for appropriate initial conditions, effectively allow only one half of the flow domain to
be considered.

The formal asymptotic structure of the steady flow in a shallow cavity where L > 1 and
R = RIL = 0(1) is described in [9]. Throughout most of the cavity (the core region) the
solution satisfying (8) and (9) is dominated by the lateral conduction associated with a
Hadley circulation, so that

+ L {( 1 -2)C (R, o-) + RiF(z)} + O(L 2 ) (10)-' ,O(L
2 ) (10)

= RI{1 + L-IC(R1 , o)F'(z)} + (L- 2 ) , (11)

as L--> o, where = xL,

1 14 13 1
F(z) = 12 5 - Z

4
+ 1 3 1(12)F120 48 72 144012)

and C,(R,, or) is a constant contribution determined by matching with solutions near the end
walls.

Near the cold wall, the solution adjusts to the boundary conditions (6) in a square zone
where x, z = 0(1),

T= L-1T(x, z, t)+ , r = (x, z, t)+ . o, = o(x, z, t)+.., (L -oo) (13)

and substitution into (2)-(4) indicates that a steady-state solution of the system
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It + a(x , , = V + R d ' IT (14)at a(x,) / ax'

V 2 P = - , (15)

T a(T, o)
dT+ d( T 4,) =V2 T , (16)
at a (x, )

is required. From (6), (7) these equations are to be solved subject to

an
= T=0 onx=0, (17)ax

06 aT
-- =-- 0 onz= 0,1 (18)az az

and to match with the core solution

T-x +c+ RIF(z), q-RF'(z), x--o. (19)

The core temperature is determined to order L-' through the matching requirement

C, = -2c, (20)

but the value of c itself can only be determined by solving the end-zone problem (14)-(19).
At low Prandtl numbers (r - 0.12) the behaviour (19) is only possible for values of RI less
than a critical value R1c (see [8], [9]) but otherwise steady-state solutions are expected to
exist for any value of R1 . The aim of the present work is to determine such solutions
numerically for a range of values of the two non-dimensional parameters ao and R1 .

3. Asymptotic properties of the steady-state end-zone solution

(i) R-O 0
For small values of the scaled Rayleigh number R the cavity flow is conduction-

dominated everywhere and in the end region the temperature and stream function fields can
be expanded in the form

T=x + RiT + RT 2 +" , (21)

¢ = R,, + R .2 +'. (22)

Here q, is a solution of the inhomogeneous biharmonic equation V4 i =1 with appropriate
boundary conditions obtained from (17)-(19), representing a symmetric turning motion in
the end zone. Further terms T, ¢2, T2 ,... in the expansions (21), (22) are obtained in
succession and have been calculated in [4]. Since T, is an odd function of z, the leading
contribution to c arises from T2, giving

c- 1.74 x 10-6 R 2 , R0. (23)
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(ii) R --->o
The main features of the boundary-layer structure proposed in [11] are as follows. Near

the cold wall there is a vertical boundary layer where

T -R7/ 5c g(}), l-R"'l 5 c~'4 (1 - z)3/4f(i 7 ) , R-oo, (24)

with 71 = Co'4 RI/ 5 x/(1 _ z)1 4 and where f and g are the solutions of the system

,. ff l 2),, 1 \ g.

fg" + 3 g' = 0 ); g- ,f 7 )(25)

f=f'=g=0(*/=0); g>1,'f 0-(-)

equivalent to the similarity solution for the boundary layer on a heated vertical wall
discussed by Pohlhausen [15]. Numerical solutions of (25) have been obtained by Ostrach
[16] and, in particular, the wall heat transfer can be approximated to 0.5% by the formula

A = g'(0) = 3 o1/4(2.436 + 4.88401/2 + 4.952o) - 1/4 (26)

The parameter c = co(o-) which appears in (24) provides the limiting form of the tempera-
ture at the edge of the vertical boundary layer and can be determined by the fact that the
steady-state heat flux

f' (a Tx + a dz = Q (27)

is independent of x at any station across the end zone. The large x form (19) implies that
Q = R2Q o + 1 where Q0 = 1/362880 and comparison with the value of Q implied by the heat
transfer through the cold wall requires that

c o = (3Q0/4A)4 15 (28)

The value of co determines the constant leading order temperature at the edge of the vertical
boundary layer, given by (24) as R /5c0. Since this is larger than order R1 it must form part
of the constant term c in the outer form of T as x -> c given by (19). Thus

c -R' 5c(o-() , R-- . (29)

The vertical boundary layer is driven by buoyancy associated with the lateral temperature
gradient across the layer which is in turn needed to maintain the necessary heat flux balance.
The layer entrains fluid and transports it to the bottom of the cold wall where it is expelled
along the bottom surface of the end zone in the form of a wall jet whose structure has been
considered by Daniels and Gargaro [17, 18]. The overall end-zone structure also involves the
recirculation of fluid forced into the end zone by the parallel core flow. The mass flux of
order R, implied by the velocity profile associated with (19) is larger than the flux within the
vertical boundary layer and the main turning motion is believed to occur on two main lateral
scales, a long scale x - R1 governed by the horizontal boundary-layer equations and a
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shorter scale x - 1 where the motion is primarily inviscid. The extent of the horizontal
boundary-layer region can be estimated from the eigenvalue analysis presented in [9] and for
infinite Prandtl number this gives an e-folding decay length

x - 2.20 x 10-4 R . (30)

The existence of both short and long lateral scales, of order R - 3/5 and order R, as R, --o
means that the accurate computation of high Rayleigh number flows in the end region is not
straightforward. Here computations are limited to the range R, < 20 000.

4. Numerical method

The end region problem (14)-(19) was solved numerically using a finite difference method.
It was decided to employ an explicit method based on the Dufort-Frankel scheme outlined
in [13] to follow the evolution of the system, in preference to an implicit method. Methods of
the latter type (for example Crank and Nicolson [19], Peaceman and Rachford [20]) have the
advantage of unconditional stability, allowing a large time step to be used, but involve the
solution of large matrix systems at each time step. Like these methods, the Dufort-Frankel
method has second order accuracy and although it must meet a Courant condition to
maintain numerical stability (Drummond [21]), it involves significantly less computational
time at each time step. The vorticity and heat equations are discretised using the Dufort-
Frankel scheme with the Arakawa [22] representation of the Jacobian terms and a five-point
multigrid scheme [14] is used to solve the Poisson equation for the stream function. The
outer form (19) is handled by a finite truncation of x so that the conditions

aT
x 1, 4 =RF'(z) (31)

are applied in the computational domain at x = xo < o. Further details are given by Wang
[23].

The overall scheme of computation for a given Rayleigh number and Prandtl number can
be described as follows. An initial state was usually taken either in the form of a conductive
solution with no motion T=x, qi = = 0 (O x <xo) or in the form of a steady-state
solution obtained at a lower Rayleigh number R,. The temperature, vorticity and stream
function fields are then found in succession at each time step, using an implicit scheme with
successive over-relaxation for the first time step and then the Dufort-Frankel three-layer
scheme for subsequent time steps. The computation continues until a steady-state solution is
achieved, as measured by the maximum differences between successive values of T and o.
During the computation the heat-flux integral (27) is used to monitor the accuracy of the
converged steady-state solution by calculating its value at several x stations and comparing
with the known value of Q.

The computer code was checked by using it to find a numerical solution for the
thermally-driven flow in a square cavity, replacing the outer boundary condition by T = 1 at
x = 1. Results were found for a Rayleigh number R, = 14660 and Prandtl number o- = 0.733
using 10 x 10, 20 x 20, 30 x 30 and 40 x 40 computational grids and were found to be in good
agreement with those obtained for the same problem by Cormack, Leal and Seinfeld [24],
Kublbeck, Merker and Straub [25] and Drummond [21]. The results also agreed well with
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those predicted by the Harwell code Flow3D. Values of the stream function at the centre of
the cavity were found to differ by only 0.3% for the 30 x 30 and 40 x 40 grids.

5. Results

Low Prandtl number calculations were carried out with tr = 0.05 and Rayleigh numbers R.
varying from 200 to 600. An outer boundary x, = 6 and a 180 x 30 computational grid were
used. For R = 200 the flow remains parallel throughout most of the domain and a
near-symmetric turning motion is limited to the region 0 < x - 1.5. At R. = 400 the flow field
exhibits closed streamlines with an eddy centred at x = 1.5, z = 0.5 and as the Rayleigh
number increases, further eddies become evident along the centre-line z = 0.5, resulting in
the flow pattern shown in Figure 1 for R = 600. This behaviour is consistent with the onset
of secondary flow predicted by a linear stability analysis of the parallel core flow, [10], [9],
which suggests that the parallel flow will give way to stationary multicellular convection when
RI reaches a value R,c(0.05) 610. The critical wavenumber of the instability is given by
2.65 and the corresponding critical wavelength 2r/2.65 = 2.37 compares well with the
distance 2.39 measured between the centres of neighbouring cells in Figure 1. The
development of the instability can also be seen in plots of the skin friction on the bottom wall
of the cavity, shown in Figure 2. Once the Rayleigh number exceeds its critical value it is no
longer appropriate to apply the outer boundary conditions in the form (19) and the end
region can no longer be considered in isolation. The local Nusselt number at the cold wall,

6

Fig. 1. Contours of the steady-state solution for (a) stream function, (b) vorticity, (c) temperature, for Oa = 0.05 and
R, = 600, using a 180 x 30 grid with x, = 6.
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-o

W/R

-o0.

o: RI = 600

x : Rl = 400

A: RI = 200

Fig. 2. Skin friction w/R, on the bottom wall with ao = 0.05 for various Rayleigh numbers.

Nu -| =
ax =o '

is shown in Figure 3. Generally, the results obtained here are consistent with those obtained
earlier in [8] and also with numerical simulations of the full cavity flow by Drummond and
Korpela [26].

Extensive numerical calculations were carried out for air (a = 0.733) where, in principle, a
steady-state solution should exist for all Rayleigh numbers. Accurate results (as measured by
the heat flux constraint (27)) were obtained for 100 - R1 14 000 and further results with
somewhat less accuracy for R =20000 and are summarised in Figures 4-10. Outer
boundaries varying from x, = 3 at the lowest Rayleigh number to x, = 20 at the highest

3.0]

2.5

Nu
o: R = 600

x : R = 400-

a: R =200

Fig. 3. Local Nusselt number Nu on the cold wall with a = 0.05 for various Rayleigh numbers.

(32)

0.0 0.1 0.2 0.3 0. 0.5 0.6 0.7 0.8 0.9 1.0
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1 .0.

f 
I - -
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c

a
Fig. 4. Contours of the steady-state solution for (a) stream function, (b) vorticity, (c) temperature, for o- = 0.733
and R = 100, using a 120 x 40 grid with x = 3.

Rayleigh number were used, with typical computational grids 90 x 30, 120 x 40, 150 x 25 and
175 x 25. It was found vital to increase the outer boundary in line with the type of behaviour
made evident by (30) - failure to apply the outer boundary condition at a sufficiently large
value of x led to the onset of numerical instability near x,. Figures 4-7 show streamlines,
isotherms and vorticity contours.

For low Rayleigh numbers, roughly less than 1000 (Figures 4, 5) non-parallel flow is
restricted to a square area near the cold wall, and away from that the flow is approximately
parallel to the horizontal boundaries. For R = 100 the flow is virtually symmetric and
dominated by conduction, as expected from (21), (22). When RI increases to 5000 or more
(Figures 6, 7) the flow patterns change dramatically. A vertical thermal boundary layer is
gradually formed on the cold wall, with a horizontal width x 4 1, while away from the cold
wall the flow requires an increasingly large distance x > 1 to achieve the outer form
associated with the parallel core flow. At the higher Rayleigh numbers the vertical boundary
layer is much thinner, and the strongest horizontal temperature gradients are set up near the
top corner of the cold wall, where there is vigorous convection down the wall. Also, a small
eddy develops in the streamline field near the lower cold corner (R1 = 14 000, Figure 7) and
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C

b

a
Fig. 5. Contours of the steady-state solution for (a) stream function, (b) vorticity, (c) temperature, for = 0.733
and R = 1000, using a 90 x 30 grid with x = 3.

the flow diverges slightly from the lower horizontal boundary, consistent with a theoretical
analysis of a possible horizontal boundary layer structure there in the limit R 1-- , [17, 18].
The isotherms descending the cold wall follow the streamlines near the base of the wall,
indicating that the flow there is convectively-dominated at large Rayleigh numbers. Note also
that most of the mass flux in the vertical boundary layer is conveyed to the base of the layer,
consistent with the similarity solution of Section 3.

The skin friction and temperature on the bottom wall of the cavity are shown for different
Rayleigh numbers in Figures 8 and 9. The skin friction develops both minimum and
maximum values in the range 0 <x < 1 before a constant asymptotic form is eventually
attained as x -- m. This behaviour is associated with the complex flow near the bottom of the
cold wall and suggests the possibility of flow separation on the bottom wall for Rayleigh
numbers greater than 20 000. At large Rayleigh numbers an increasingly long scale in x is
needed for the temperature to adjust to the linear conductive form associated with the
parallel core flow.

Quantitative comparisons were made with the asymptotic structure outlined in Section 3 in
three areas, relating to the form of the parameter c(R, oa) as R -- oo and to specific
properties of the vertical boundary-layer solution. Figure 10 shows the computed values of c
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C

6

a

Fig. 6. Contours of the steady-state solution for (a) stream function, (b) vorticity, (c) temperature, for a = 0.733
and R1 = 5000, using a 150 x 25 grid with x, = 3.

c based on the temperature profile (19) obtained in the numerical solution at xc~. According
to (29) the quantity c/R' 5 should approach the constant limit c(O-) as R -m where, from
(26) and (28), for r = 0.733,

co = 6.044 x 10- 5 . (33)

This horizontal asymptote is shown in Figure 10 and is in good agreement with the numerical
solution. At low Rayleigh numbers the asymptotic form (23) is also in excellent agreement
with the numerical solution for RI = 100 where it was found that c = 1.617 x 10-2; the value
predicted by (23) is c = 1.74 x 10-2.

Figures 11 and 12 show comparisons of the vertical boundary-layer structure for R1 > 1
outlined in Section 3 with the numerical results. The boundary-layer theory predicts that the
skin friction on the cold wall should approach a form proportional to R9'5 as R--> , or
more specifically,

R 9 /5 ---> - c3/4 ( - ) 1 4f"(0) , R --->o, (34)
8 xxLO 
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c

and R = 14 000, using a 175 X 25 grid with x, =7.

where, for -cr = 0.733, f"(O) 0.897. In Figure 11 the right-hand side of (34) with co given by
(33) is compared with the computed values of the left-hand side for each Rayleigh number.
This suggests that the Rayleigh number scaling is correct and the quantitative comparison
appears to be reasonable for the top half of the vertical boundary layer. The discrepancy in
the bottom half is thought to be due to the corner structure at the bottom of the cold wall
which may only be attained for extremely high Rayleigh numbers if the type of structure
envisaged by Smith and Duck [27] is valid there. The present computations indicate the right
trend but results need to be obtained for much higher Rayleigh numbers to confirm the
asymptotic predictions.

For the heat transfer, the boundary-layer theory predicts a form proportional to R as
R,-* c, or more specifically

R;2 Ac' 1 4 (l z)-1/4, (35)

~~3X x - -O

where A is given by (26). In Figure 12 the right-hand side of (35) with c given by (33) is
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x
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

-0 .I

-0.

-0.3. 0*: R = 14000

/R, R=10000
-0.4. o: R, = 7000

x R1 = 3000

-0.5A:R=.00

-0.6

-0.71

Fig. 8. Skin friction ol/R on the bottom wall with or = 0.733 for various Rayleigh numbers.

T

x

Fig. 9. Temperature T on the bottom wall with o- = 0.733 for various Rayleigh numbers.

compared with the computed values of the left-hand side for each Rayleigh number. Again
this suggests that the Rayleigh number scaling is correct and the comparison for the region
z - 0.3 is quite convincing. Again the corner structure may be responsible for the
discrepancy observed in the region close to z = 0.
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6 X 10

4- 105

2 I10o

05 L10 + 15x104
R,

Fig. 10. Numerical computation of the parameter c for a( = 0.733, and the asymptotes predicted by (23) and (29)

z

a/R9/5
10 co/R,'

Fig. 11. Scaled skin friction W)IR9'5 on the cold wall with ar=0.733 for various Rayleigh numbers and the
asymptotic profile predicted by boundary-layer theory (---).

Other general features of the computations at high Rayleigh numbers are encouraging in
terms of the proposed asymptotic structure. Apart from the vertical boundary-layer
structure, the asymptotic theory predicts that the flow must turn the corner at the base of the
cold wall and then develop within a horizontal layer where the isotherms descending the cold
wall attach to the bottom wall of the cavity. The horizontal structure eventually merges with
the main recirculatory flow in the end zone on the long scale x = O(R1 ) as R, --> o. This scale
is observed in the numerical computations and the isotherm pattern of Figure 7 is consistent
with the expected behaviour.

Results have also been obtained for the case of water (o = 6.983). At low Rayleigh
numbers the flow patterns are similar to those of air, [23]. More work is needed to obtain
results for high Rayleigh numbers to compare with the asymptotic theory in this case.

I
I - - - - - - - - --
I

I

I

I I

104
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7

tO Nu/R,

A : R =14000

0: R,=10000

X: R, =7000

0.0 0.2 0.4 0.6 0.8 .0

z

Fig. 12. Scaled local Nusselt number Nu/R: on the cold wall with o- = 0.733 for various Rayleigh numbers and the
asymptotic profile predicted by boundary-layer theory (---).

6. Discussion

A detailed numerical study of the end zone in a shallow cavity with insulated horizontal
boundaries has been carried out. For low Prandtl number fluids, secondary flow is seen to
appear in the form of stationary transverse rolls in agreement with the predictions of linear
stability theory and the earlier computations reported in [8]. At low Rayleigh numbers the
present computation of the parameter c in the temperature field of the core flow is in good
agreement with the theoretical prediction of c in [4], while at high Rayleigh numbers the
numerical solutions for air are in good agreement with the theoretical prediction of c based
on boundary-layer theory [11]. Computations of the skin friction and heat transfer at the
cold wall also appear to be consistent with the Rayleigh-number dependence predicted by
boundary-layer theory although the computations need to be extended to much higher
Rayleigh numbers in order to confirm this and to adequately test the detailed functional
dependence on z. In the future it is hoped to use a more sophisticated computational scheme
to perform accurate numerical calculations at Rayleigh numbers R1 > 20 000, taking proper
account of the various short and long length scales involved in this complex high Rayleigh
number flow.

One of us (P. Wang) is grateful for support in the form of an Overseas Research
Studentship.
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